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Supporting text for Figure 1. Pharmacology-network based drug repurposing for 

CMT1A disease. 

(A) Three principal pathways regulating expression of PMP22 gene through 

extracellular GPCR signalling in Schwann cells. The presumed crosstalk between cAMP 

pathway, neurosteroid-mediated signalling and mutually-balanced PI3K-AKT/ERK kinase 

cascades provides functional signals regulating the expression of PMP22 gene. cAMP 

signalling is implicated in different aspects of Schwann cell biology and influences their 

differentiation and myelin formation [1, 2]. cAMP/PKA module is able to modify the activity 

of several transcriptional factors implicated in the transcriptional control of PMP22 gene. In 

cell cultures, cAMP increases the expression of PMP22 protein acting presumably, through 

down-regulation of inhibitory effect of cAMP-dependent silencer element in the promoter 

region of PMP22 gene [3, 4]. The physical contact of Schwann cells with neurons is thought 

to control the intracellular levels of cAMP, modifying Schwann cell response to growth 

factors [1]. Moreover, the differentiated state of Schwann cells depends on the counter-

balanced activation of ERK and PI3K-AKT pathways by growth factors, mediated through 

receptor-tyrosine kinases, with PI3K-AKT signalling promoting differentiation and 

expression of myelin proteins [5, 6]. It was shown that canonical cAMP-PKA-CREB pathway 

synergistically and in a dose-dependent manner enhances pro-myelination effects of NRG1 

signalling likely mediated by AKT kinase and EGR2 transcription factor, a positive regulator 

of myelination program and PMP22 transcription in Schwann cells [7, 8]. 

Neurosteroid progesterone and its derivatives (DHP and allopregnanolone) play an important 

role in myelin formation acting as autocrine regulatory factors. Transcriptional up-regulation 

of PMP22 gene by the neurosteroids can be mediated or modified by cAMP signalling; thus, 



treatment with allopregnanolone, a positive allosteric modulator of GABAA receptors, 

increases the level of intracellular cAMP and CREB phosphorylation in Schwann cells [4, 9–

11]. We expected that these convergent signalling pathways in Schwann cells can be 

simultaneously regulated by different G-protein coupled receptors (GPCRs) either directly or 

via crosstalk with receptor tyrosine kinases, as it was shown in other cellular settings [12, 13]. 

Accordingly, pharmacological modulation of the G-protein coupled receptors opens the 

possibility for developing robust and safe combinational therapeutics decreasing the 

deleterious excessive expression of PMP22 protein and restoring the differentiation program 

in CMT1A Schwann cells. 

GABA(B)R: metabotropic GABA receptor; OPRs: opioid receptors; FLNA: filamin A, alpha; 

POMC: proopiomelanocortin; PENK: proenkephalin; PDYN: prodynorphin; CHRMs: 

muscarinic receptors; Gαi: inhibitory subunit of G alpha proteins; Gαs: stimulatory subunit of 

G alpha proteins; ADCY: adenylate cyclase; PKA: cAMP-dependent protein kinase A; 

CREB: cAMP responsive element binding protein; NFKB: nuclear factor-kappa B; RTK: 

receptor tyrosine kinases; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; ERK: 

mitogen-activated protein kinase 1 and 3; AKT: v-akt murine thymoma viral oncogene 

homolog 1; GABA(A)R: inotropic GABA receptors; PR: nuclear progesterone receptor; 

EGR2: early growth response 2 transcription factor; PROG: progesterone, DHP: 

dihydroprogesterone; THP: allopregnanolone, positive modulator of GABA(A)R receptors. 

PROG, DHP and THP are neurosteroids produced by Schwann cells. cAMP: cyclic AMP; 

PDGF: platelet-derived growth factor; IGF1: insulin-like growth factor 1; NRG1: neuregulin 

1; “silencer”: putative cAMP-dependent regulatory region in the promoter of PMP22 gene. 

(B) Cytoprotective and neuromodulator actions of PXT3003 drug combination in 

peripheral neurons. The reciprocal interactions of neuronal and Schwann cells assure correct 

processing of sensory and locomotor information in the peripheral nervous system (PNS) [14, 



15]. We supposed that primarily functional abnormalities, induced by PMP22 overexpression 

in CMT1A Schwann cells, provoke a cascade of pathophysiological alterations in neurons 

[16]. Therefore, as an additional selection criterion for clinical development, we evaluated the 

potential capacity of candidate drugs for attenuating these secondary destructive effects in 

neuronal cells. 

Schwann cells regulate the level of several neurotransmitters (GABA, ATP and glutamate) 

and inflammatory proteins in PNS [17–24]. Glutamate and ATP play an important role as 

excitatory and cytotoxic neurotransmitters under pathological conditions and are implicated in 

perturbed nociceptive signalling associated with inflammatory and neuropathic pain [25–33]. 

Dysfunction of CMT1A Schwann cells can not only disturb myelination process, but probably 

also affect levels of these neuromodulator substances, which can significantly compromise 

functional performance of neuronal signalling. Several publications demonstrated the 

excessive activation P2RX7 receptors, which modulate processing and release of CNTF and 

IL1B, in CMT1A Schwann cells [19, 34]. We hypothesized that increased neuronal 

excitability of sensory and motor neurons is responsible for development of at least some of 

pathological manifestations of CMT1A and represents an important functional target for 

therapeutic intervention in Charcot-Marie-Tooth disease. 

Both GABAB and opioid receptors are powerful modulators of neuronal excitability and 

painful sensation [35–38]. GABAB receptors agonized by baclofen are able to inhibit P2X3 

receptor-mediated neuronal excitability of nociceptive neurons, and attenuate NMDA-

activated current in the primary sensory neurons [39, 40]. Basic molecular mechanism 

underlying antinociceptive effects of GABAB and opioid receptors can be mediated by the 

coupling of both receptors to activation G protein-gated inwardly rectifying K+ (GIRK) 

channels and inhibition of voltage-gated Ca
2+

 channels, though these metabotropic receptors 

are able also to modulate activity of TRPV1, voltage-gated sodium, ASICs and NMDA 



receptors [38, 41–45]. Although not considered a significant symptom, pain is frequently 

complained by CMT1A patients [46, 47]. We expect that PXT3003 combination could 

attenuate sensory impairments accompanied development of Charcot-Marie-Tooth disease.  

GABAB and opioid receptors are not only potent modulators of neuronal excitability, but are 

also able to activate several cytoprotective signalling pathways in different experimental 

settings (some of the established signalling modules, implicated in the anti-apoptotic effect of 

GABAB and opioid receptors, are shown) [35, 45, 48–51]. For instance, both GABAB and 

opioid receptors can protect neuronal cells from apoptosis by transactivation of IGF-1R 

receptor [52–55]. Importantly, neurotropic insulin-like growth factor-1 (IGF-1) not only 

protects cell from various cytotoxic insults, but also promotes axonal growth from dorsal root 

ganglion (DRG) neurons [56].  

Finally, muscarinic receptors, that might mediate therapeutic effect of sorbitol, are also 

recognized as important functional receptors in PNS, modulate neuronal activity of primary 

sensory neurons, are implicated in nociceptive sensation and could provide substantial 

neuroprotection from broad spectrum of cytotoxic factors [49, 57–59].  

We suppose that PXT3003 combination could preserve functional integrity of neuronal cells 

in CMT patients by attenuating excessive excitability of peripheral neurons, normalize 

propagation of neuronal impulses and reduce axonal loss and functional perturbations at 

neuro-muscular junctions. 

IGFR1: insulin-like growth factor 1 receptor; PKC: protein kinase C; SRC: v-src avian 

sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog; AMPK: AMP-activated kinase; 

FAK: Focal adhesion kinase; BCL2: B-cell CLL/lymphoma 2; CACNAs: calcium channels, 

voltage-dependent; GRINs: ionotropic NMDA glutamate receptors; VGSC: sodium channels, 

voltage-gated; TRPV1: transient receptor potential cation channel, subfamily V, member 1; 



ASICs: acid-sensing (proton-gated) ion channels; P2X3: purinergic receptor P2X, ligand-

gated ion channel, 3; GIRKs: G protein-coupled inwardly-rectifying potassium channels. 
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